The Intersection Type Unification Problem

نویسندگان

  • Andrej Dudenhefner
  • Moritz Martens
  • Jakob Rehof
چکیده

The intersection type unification problem is an important component in proof search related to several natural decision problems in intersection type systems. It is unknown and remains open whether the unification problem is decidable. We give the first nontrivial lower bound for the problem by showing (our main result) that it is exponential time hard. Furthermore, we show that this holds even under rank 1 solutions (substitutions whose codomains are restricted to contain rank 1 types). In addition, we provide a fixed-parameter intractability result for intersection type matching (one-sided unification), which is known to be NP-complete. We place the intersection type unification problem in the context of unification theory. The equational theory of intersection types can be presented as an algebraic theory with an ACI (associative, commutative, and idempotent) operator (intersection type) combined with distributivity properties with respect to a second operator (function type). Although the problem is algebraically natural and interesting, it appears to occupy a hitherto unstudied place in the theory of unification, and our investigation of the problem suggests that new methods are required to understand the problem. Thus, for the lower bound proof, we were not able to reduce from known results in ACI-unification theory and use game-theoretic methods for two-player tiling games. 1998 ACM Subject Classification F.4.1 Mathematical Logic

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Algebraic Intersection Type Unification Problem

The algebraic intersection type unification problem is an important component in proof search related to several natural decision problems in intersection type systems. It is unknown and remains open whether the algebraic intersection type unification problem is decidable. We give the first nontrivial lower bound for the problem by showing (our main result) that it is exponential time hard. Fur...

متن کامل

On Type Inference in the Intersection Type Discipline

We introduce a new unification procedure for the type inference problem in the intersection type discipline. We show that unification exactly corresponds to reduction in an extended λ-calculus, where one never erases arguments that would be discarded by ordinary β-reduction. We show that our notion of unification allows us to compute a principal typing for any strongly normalizing λ-expression.

متن کامل

Principality and type inference for intersection types using expansion variables

Principality of typings is the property that for each typable term, there is a typing from which all other typings are obtained via some set of operations. Type inference is the problem of finding a typing for a given term, if possible. We define an intersection type system which has principal typings and types exactly the strongly normalizable λ-terms. More interestingly, every finite-rank res...

متن کامل

Properties of a Rewrite System for Unification with Expansion Variables⋆

A study of properties of a rewrite system for solving constraint sets that are instances of the unification with expansion variables problem. The terms in the constraints are built from the intersection type constructors plus type variables and applied expansion variables. We show that: • Constraint set rewriting is confluent (modulo isomorphism). • There is a set of well-named constraint sets ...

متن کامل

Beta-reduction as Unification Dedicated to the Memory of Professor Helena Rasiowa

We define a new unification problem, which we call β-unification and which can be used to characterize the β-strong normalization of terms in the λ-calculus. We prove the undecidability of β-unification, its connection with the system of intersection types, and several of its basic properties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016